Spontaneous intracranial artery dissection is an uncommon and probably underdiagnosed cause of stroke that is defined by the occurrence of a haematoma in the wall of an intracranial artery. Patients can present with headache, ischaemic stroke, subarachnoid haemorrhage, or symptoms associated with mass effect, mostly on the brainstem. Although intracranial artery dissection is less common than cervical dissection in adults of European ethnic origin, intracranial artery dissection is reportedly more common in children and in Asian populations. Risk factors and mechanisms are poorly understood, and diagnosis is challenging because characteristic imaging features can be difficult to detect in view of the small size of intracranial arteries. Therefore, multimodal follow-up imaging is often needed to confirm the diagnosis. Treatment of intracranial artery dissections is empirical in the absence of data from randomised controlled trials. Most patients with subarachnoid haemorrhage undergo surgical or endovascular treatment to prevent rebleeding, whereas patients with intracranial artery dissection and cerebral ischaemia are treated with antithrombotics. Prognosis seems worse in patients with subarachnoid haemorrhage than in those without.

Introduction
Cervicocephalic artery dissection, which corresponds with a haematoma in the wall of a cervical or an intracranial artery, is an important cause of stroke in children and young and middle-aged adults. Although dissection of the extracranial cervical arteries has been extensively studied and described, less information is available about pure intracranial artery dissection (ie, not including the cervical portion of the artery). Early reports were exclusively based on autopsy series, hence biased towards the most severe cases of intracranial artery dissection. Several possible reasons are available for the absence of information about intracranial artery dissections. First, intracranial artery dissection happens less frequently than cervical artery dissection in non-Asian countries, where the largest series of patients who had cervical artery dissection have been reported so far. Second, patients who have cervical artery dissection and mainly present with headache, cervical pain, and ischaemic stroke are mostly seen by neurologists, whereas patients with intracranial artery dissection can also develop a subarachnoid haemorrhage and are therefore managed not only by neurologists, but also by neurosurgeons and interventional neuroradiologists, all of whom might have an incomplete picture of the disease. As a result, no consensus is agreed on for the diagnostic criteria and optimum treatment of patients with intracranial artery dissections.

In this Review we provide a comprehensive overview of reported studies into the epidemiology, pathophysiology, diagnosis, management, and outcome of spontaneous intracranial artery dissections, in addition to proposing a consensus statement by a group of international experts from various specialties and countries about the diagnosis and management of intracranial artery dissections.

Epidemiology
The incidence of intracranial artery dissections is unknown, but is probably lower than that of symptomatic cervical artery dissection (2–6–3·0 per 100 000 people per year) in populations of European ethnic origin. The proportion of intracranial artery dissections in all cervicocephalic dissections substantially varies between ethnic origin and age groups, and also depends on study recruitment strategies and ascertainment methods used. Recruitment of patients for studies through neurology departments is biased towards those with cervical artery dissection or intracranial artery dissection without subarachnoid haemorrhage, whereas patient recruitment through departments of neurosurgery or interventional neuroradiology is biased towards intracranial artery dissection with subarachnoid haemorrhage. In a series of 195 patients with vertebral artery dissections who were recruited in neurology departments in France and Switzerland, only 11% of dissections were located exclusively in the intracranial portion of the artery. In a Mexican study of 100 patients admitted to a neurology department for vertebral artery dissection with ischaemic stroke and without subarachnoid haemorrhage, 27 (27%) patients had intracranial artery dissection. In studies undertaken in east Asia, in which patients were mostly recruited through neurosurgery and interventional neuroradiology departments, intracranial artery dissection
accounted for up to 67–78% of all cervicocephalic artery dissections.19,20 Most reported series of patients with intracranial artery dissection are from Asia (95% of studies including >40 patients with intracranial artery dissection, and 61% of studies including 20–39 patients with this disorder). Whether this suggests publication bias, differences in disease prevalence across ethnic origin groups, or both, is unclear.

Intracranial artery dissections can also affect children, but a dearth of scientific literature exists about this problem in children, given the rarity of childhood stroke. In a North American single-centre series26 of eight (7%) IADs were bilateral (ten), PICA involved (47), MCA (11 patients), ACA (two patients), BA (four patients), PICA (one patient), MCA (eight patients), ACA (11 patients), MCA (eight dissections)*.

\textbf{Vertebrobasilar IAD}

<table>
<thead>
<tr>
<th>N</th>
<th>Country origin (department)</th>
<th>Imaging method</th>
<th>Mean age (range)</th>
<th>Sex</th>
<th>Anatomical location</th>
<th>Presenting symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yamaura et al (2000)23</td>
<td>Japan (neurosurgery survey)</td>
<td>DSA</td>
<td>51 (8–86) years (SAH 53 years, non-SAH 49 years)</td>
<td>Ratio of men to women 2:1; with non-SAH 2.6:1</td>
<td>3% anterior circulation (SAH 2%, non-SAH 5%); 97% posterior circulation (SAH 98%, non-SAH 95%), in VA (261 patients), BA (22 patients), ICA (ten patients), or other artery (29 patients)9</td>
<td>SAH (206 patients [58%]), cerebral ischaemia (112 patients [31%]), headache alone (26 patients [7%]), other (13 patients [4%])</td>
</tr>
<tr>
<td>Mizutani (2011)29</td>
<td>Japan (neurosurgery, radiology)</td>
<td>MRA, DSA, or CTA</td>
<td>49 (0–74) years (SAH 52 [0–65] years, non-SAH 45 [22–47] years)</td>
<td>69% men (SAH 62%, non-SAH 77%)</td>
<td>14% anterior circulation (SAH 11%, non-SAH 14%); 88% posterior circulation (SAH 80%, non-SAH 86%), VA (155 dissections), PICA (11 dissections), ACA (11 dissections), MCA (eight dissections) ¶</td>
<td>SAH (108 dissections [52%]), headache, or cerebral ischaemia (98 dissections [48%])</td>
</tr>
<tr>
<td>Ono et al (2012)30</td>
<td>Japan (neurosurgery)</td>
<td>DSA and CT in all patients, MRI in some patients</td>
<td>51 (7–82) years (SAH 53 [31–81] years, non-SAH 48 [10–74] years)</td>
<td>59% men (SAH 58%, non-SAH 61%)</td>
<td>22% anterior circulation (SAH 15%, non-SAH 32%); 78% posterior circulation (SAH 85%, non-SAH 68%), VA (99 patients; 16 [11%] IADs in the VA were bilateral), ACA (11 patients), MCA (11 patients), ICA (eight patients), BA (seven patients), PICA (five patients), PCAo (one patient), PCA (one patient)</td>
<td>SAH (86 patients [60%]), headache, or cerebral ischaemia (57 patients [40%])</td>
</tr>
<tr>
<td>Kwak et al (2011)31</td>
<td>South Korea (radiology)</td>
<td>DSA</td>
<td>51 years§</td>
<td>58% men§</td>
<td>24% anterior circulation (SAH 7%, non-SAH 44%); 76% posterior circulation (SAH 93%, non-SAH 57%)</td>
<td>SAH (25 patients [27%]), SAH and ischaemia (three patients [3%]), infarction (20 patients [22%]), other cerebrovascular symptoms (44 patients [48%])</td>
</tr>
<tr>
<td>Metso et al (2007)32</td>
<td>Finland (neurosurgery, neurosurgery)</td>
<td>SAH: DSA (50%) or CTA (50%); non-SAH: MRA (100%), MRI (96%), US (39%), or CTA (9%)</td>
<td>46 (21–67) years (SAH 51 [32–67] years, non-SAH 42 [21–56] years)</td>
<td>58% men (SAH 50%, non-SAH 65%)</td>
<td>16% anterior circulation (SAH 14%, non-SAH 22%); 84% posterior circulation (SAH 86%, non-SAH 78%), VA (28 patients; one [2%] IAD in the VA was bilateral), ICA (five patients), BA (four patients), PICA (three patients), ACA (two patients), MCA (one patient), PICA (one patient), pericallosal artery (one patient)</td>
<td>SAH (22 patients [49%]), headache, or cerebral ischaemia (23 patients [51%])</td>
</tr>
</tbody>
</table>

\textbf{Vertebral IAD}

<table>
<thead>
<tr>
<th>N</th>
<th>Country origin (department)</th>
<th>Imaging method</th>
<th>Mean age (range)</th>
<th>Sex</th>
<th>Anatomical location</th>
<th>Presenting symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahn et al (2012)33</td>
<td>South Korea (neurosurgery, radiology)</td>
<td>DSA in all, CTA, MRI, or MRA in some</td>
<td>Median 47 (21–80) years (SAH 45 years, non-SAH 48 years)</td>
<td>61% men</td>
<td>Vertebralbasilar IAD included: 20 (10%) IAD in the VA were bilateral</td>
<td>SAH (48 patients [21%]), non-SAH (182 patients [79%]), ischaemia frequency unknown</td>
</tr>
<tr>
<td>Kim et al (2011)34</td>
<td>South Korea (neurosurgery, radiology)</td>
<td>DSA</td>
<td>45 (24–78) years</td>
<td>63% men</td>
<td>Vertebralbasilar IAD included: BA involved (ten), PICA involved (47), eight (7%) IADs were bilateral</td>
<td>SAH (73 patients [66%]), ischaemia, or headache (38 patients [34%])</td>
</tr>
<tr>
<td>Matsukawa et al (2012)35</td>
<td>Japan (neurosurgery)</td>
<td>MRI, MRA, CTA, DSA</td>
<td>53 (IQR 45–66) years (SAH 50 [46–59] years, non-SAH 54 [45–69] years)</td>
<td>69% men (SAH 77%, non-SAH 67%)</td>
<td>Vertebral IAD included: three (3%) IADs were bilateral</td>
<td>SAH (22 patients [21%]), ischaemia, or headache (81 patients [79%])</td>
</tr>
<tr>
<td>Kashiwaski et al (2012)36</td>
<td>Japan (neurosurgery)</td>
<td>Not specified</td>
<td>52 (SD 9) years</td>
<td>55% men</td>
<td>Vertebral IAD without PICA involvement</td>
<td>SAH (45 patients [62%]), non-SAH (28 patients [38%], asymptomatic, or headache)</td>
</tr>
</tbody>
</table>

(Table 1 continues on next page)
263 consecutive patients with cervicocephalic dissections, 18 (7%) occurred in children, of which 11 (61%) were intracranial. Similar proportions were noted in other studies, including in non-Asian populations.

In most series, intracranial artery dissections affect the anterior circulation, by contrast with adults, in whom it mostly affects posterior circulation. In children, bilateral cervical artery dissection does (<11% in most intracranial artery dissection series vs 15% in cervical artery dissection series), with bilateral intracranial artery dissection mostly reported in the V4 segment.

As stated in initial reports by neurologists, paediatric intracranial artery dissection occurs mostly in the anterior circulation, by contrast with adults, in whom it mostly affects posterior circulation. However, these reports are probably biased towards cases without subarachnoid haemorrhage. Nowadays, reports by interventional neuroradiologists frequently note posterior circulation involvement in children with
intracranial artery dissection, a location probably more prone to present with subarachnoid haemorrhage than the anterior circulation.25

In a study that recruited patients with intracranial artery dissection through both neurosurgery and neurology departments during the same period, investigators reported that the proportion of people with pure intracranial artery dissection (ie, without dissection of the cervical portion of the artery) leading to subarachnoid haemorrhage was 54%.26 Subarachnoid haemorrhage from intracranial artery dissection is much less common than subarachnoid haemorrhage from ruptured intracranial saccular aneurysms. Autopsy series from Japan46,47 have reported that between 4.5% and 10.5% of fatal non-traumatic cases of subarachnoid haemorrhage had ruptured intracranial artery dissection. In a study48 combining data from intervention neuroradiology and neurosurgery departments in two hospitals during 6 years, a total of 756 (568 ruptured [75%] and 188 unruptured [25%]) saccular aneurysms, and 14 (1.8%) symptomatic, intradural, dissecting vertebral aneurysms were treated. Similarly, in the multicentre aneurist study,49 17 intracranial artery dissections among 1834 ruptured and unruptured aneurysms (1-5%) were reported in 1135 patients.

In adults, a male preponderance was noted in Asian populations with intracranial artery dissection, but not in non-Asian populations. Mean age at occurrence of intracranial artery dissection was 50-4 years (range 47-61 years),30,31,42-47 and patients with intracranial artery dissection with subarachnoid haemorrhage tend to be older than those with intracranial artery dissection without subarachnoid haemorrhage (table 1; appendix). Studies into paediatric intracranial artery dissections have consistently shown a substantial male preponderance, as with cervical artery dissection in children.25,27

Pathophysiology
Anatomy of the intracranial carotid and vertebral arteries
The intradural portion of the internal carotid artery starts at the clinoid segment of the artery (C6), from which the ophthalmic artery arises in most patients. The intradural portion of the vertebral artery is called the V4 segment, from which the anterior spinal artery and posterior inferior cerebellar artery originate (figure 1).

By contrast with cervical arteries, intradural arteries are characterised by a well developed internal elastic lamina, a paucity of elastic fibres in the media, little adventitial tissue, and no external elastic lamina.31,32 These features, and weaker supporting tissues than cervical arteries,44 probably make intracranial arteries increasingly prone to subadventitial dissection and subsequent subarachnoid haemorrhage.11,12 In internal carotid arteries, the external elastic lamina is present in the petrous portion (the portion where the internal carotid artery enters the canal in the petrous portion of the temporal bone; C3), but disappears in the horizontal segment of the cavernous portion (C5) when the artery is situated between the layers of the dura mater, forming the cavernous sinus.35,36 Hence dissections starting in the intrapetrous portion of the internal carotid artery mimic cervical artery dissections, whereas dissections in the intradural portion of the internal carotid artery—in other words, starting in C6—can lead to subarachnoid haemorrhage. In vertebral arteries, the reduction of elastic fibres in the tunica media and external elastic lamina is most pronounced in the last 0.5 cm before the intradural portion, but is not complete until 0.5 cm after the point of dural perforation.37 Sometimes it is possible to distinguish between a dissection of the distal extracranial segment (V3) and a dissection in the V4 segment, which can be challenging due to blood flow changes immediately proximal and distal of the dissection site.

Mechanisms and pathological features
Little is known about the pathophysiology of intracranial artery dissection. Although available neuropathological specimens have generally shown a disruption of the internal elastic lamina and the media,30,37 whether direct bleeding of vasa vasorum (small blood vessels in the wall of larger blood vessels) in the arterial wall can be the initial event is unclear.38 Vasa vasorum are not always seen in intracranial arteries and seem to predominate in the tunica adventitia and proximal intracranial arteries.39

In a study40 where tissue samples were obtained by surgery or autopsy at different timepoints after symptom onset, the intradural haemorrhage was replaced by granulation tissue after 14 days from onset, followed by compensatory intimal thickening around the pseudo-lumen. In samples obtained after more than 30 days from symptom onset, neovascularisation in the thickened
Different patterns of intimal injury in intracranial artery dissection have been reported. A mural haematoma might be caused by one entrance in the pseudolumen (so-called entry-only lesions) or an entrance and an exit in the pseudolumen (so-called entry-exit lesions). Entry-only lesions can have a higher occurrence of subarachnoid haemorrhage than entry-exit lesions.61

The pathophysiological overlap of intracranial artery dissection with giant fusiform aneurysms and blood blister-like aneurysms is controversial, but they should probably be regarded as distinct entities.62–65 Mycotic or oncological giant fusiform aneurysms are non-dissecting and are caused by the release of proteases by bacteria or tumour cells that break down the vessel wall. Blood blister-like aneurysms located at non-branching sites of intracranial arteries are caused by a degeneration of the internal elastic lamina and media without associated arterial dissection (no mural haematoma or double lumen on pathological examination).66

Risk factors and predisposing conditions
Risk factors for intracranial artery dissections are unknown. No comparisons exist between putative risk factors in patients with intracranial artery dissection and healthy controls. In the few studies that included both patients with cervical artery dissection and those with intracranial artery dissection, distribution of vascular risk factors did not differ between the two groups,11 except for one study17 showing a higher prevalence of hypertension in patients with intracranial artery dissection. However, this finding17 might be accounted for by the older age of patients with intracranial artery dissection than control participants in that study (mean age 48 years vs 37 years).

Whether cervicocerebral trauma is a risk factor for intracranial artery dissection, as it is for cervical artery dissection,42 is unclear. In two studies23,37 that compared patients with cervical artery dissection and patients with intracranial artery dissection, a history of minor trauma was more often present in patients with cervical artery dissection, both in children and adults. In our experience, sudden physical movements that lead to a sudden stretch of the arteries are sometimes reported before the event, but this association has not been systematically analysed in large patient series. Some instances of intracranial artery dissection in children, in our experience, have been associated with intracranial or systemic infections.

Differences in prevalence and characteristics of intracranial artery dissections between ethnic origins, and the more frequent occurrence of intracranial artery dissection in children than in adults, suggest that genetic risk factors could contribute to the occurrence of intracranial artery dissection. However, genetic contribution to intracranial artery dissections has so far not been explored. Exceptionally, intracranial artery dissection might be a complication of rare monogenic disorders of connective tissue, such as Loeys-Dietz syndrome.80–83 Whether carotid and vertebral artery dissections noted in patients with vascular Ehlers-Danlos syndrome include intracranial artery dissections is not detailed in reported large series.20,21 Isolated cases of suspected intracranial artery dissections have been noted in patients with Marfan’s syndrome.22

Patients with fibromuscular dysplasia (a non-atherosclerotic, non-inflammatory vascular disease that mainly affects the renal and cervical arteries) have an increased risk of cerebral artery dissection and intracranial aneurysms; whether these patients also have an increased prevalence of intracranial artery dissection is unknown.23–26 Only isolated instances of intracranial artery dissection and fibromuscular dysplasia have been reported,26,27 and patients with fibromuscular dysplasia were excluded from many reported series of patients with intracranial artery dissection. Overlap between intracranial artery dissection and segmental arterial medialysis (a rare arterial disease that presents with life-threatening haemorrhages through ruptured aneurysms in the abdominal cavity), the retroperitoneum, and more seldom the base of the brain, is unclear.28,29

Clinical presentation and radiological features
Clinical presentation of intracranial artery dissections is not specific. The two main manifestations are subarachnoid haemorrhage and cerebral ischaemia.11 In most reported series (table 1), intracranial artery dissections with subarachnoid haemorrhage represent 50–60% of all intracranial artery dissections. Subarachnoid haemorrhage occurs if the arterial wall of an intracranial artery dissection in the intradural portion ruptures. Between 30% and 78% of patients with intracranial artery dissection present with cerebral ischaemia (ischaemic stroke or transient ischaemic attack), without subarachnoid haemorrhage. No specific pattern of brain infarction emerged from our Review, and underlying stroke mechanisms could be either haemodynamic, thromboembolic, or due to occlusion of a perforating artery by the mural haematoma. Rarely, both subarachnoid haemorrhage and ischaemic stroke can be present in combination.22 About 80% of patients with intracranial artery dissection have prodromal headache, before a subarachnoid haemorrhage or cerebral ischaemia, with subarachnoid haemorrhage occurring within 3 days after onset of headache in 96% of patients.25,26 Onset of prodromal headache was described as sudden in only a few patients (in 13% of patients with intracranial artery dissection without subarachnoid haemorrhage and in 17% with intracranial artery dissection with subarachnoid haemorrhage).25,26

Other uncommon manifestations of intracranial artery dissections include isolated headache and symptoms associated with mass effect, which mostly affects the brainstem or cranial nerves (table 1; appendix). Rarely,
intracerebral haemorrhage has been noted in patients with intracranial artery dissection and, in our experience, even sometimes without subarachnoid haemorrhage.

Radiological diagnosis of intracranial artery dissection can be a challenge in view of the small size of intracranial arteries and the subtle and non-specific radiological signs, which tend to develop with time. Table 2 lists possible differential diagnoses to consider, along with features in favour of intracranial artery dissection diagnosis.

Pathognomonic radiological findings of intracranial artery dissection include mural haematoma, intimal flap, and double lumen. In one study a dissection flap could be identified on MRI in more than 90% of patients with clinical symptoms and CT angiography findings of a possible intracranial artery dissection. A mural haematoma was identified in more than 50% of these patients. A mural haematoma usually leads to a regular crescent-shaped thickening of the arterial wall with enlargement of the external diameter of the dissected artery and often a reduced and eccentric arterial lumen. On T1-weighted MRI a haematoma is spontaneously hyperintense 48–72 h after onset. Detection of a mural haematoma can be improved by use of high resolution 3 Tesla imaging and three-dimensional acquisition of fat-suppressed sequences with black-blood effect that increase sensitivity and specificity of images (figure 2).

Other conditions, such as a partly recanalised thrombus or a haemorrhagic atherosclerotic plaque, might mimic this pattern and decrease specificity of recognition, but these are not associated with a focal enlargement of the external diameter. In our experience, the presence of a mural haematoma is particularly rare in aneurysmal forms of intracranial artery dissections. The presence of an intimal flap, with or without a double lumen, is a subtle sign, which is mainly observed in proximal arterial segments, and is probably best detected by digital subtraction angiography (figure 3).

Intracranial artery dissection can present with aneurysmal dilatation, segmental stenosis, or occlusion, with the distribution of these radiological subtypes widely varying between studies. Some studies reported that aneurysmal dilations were more common in intracranial artery dissection with subarachnoid haemorrhage than in intracranial artery dissection without subarachnoid haemorrhage. Both segmental stenosis and occlusion in subarachnoid haemorrhage are highly suggestive of intracranial artery dissection. However, in intracranial artery dissection without subarachnoid haemorrhage, these findings of segmental stenosis and occlusion are non-specific. Likewise, a fusiform or irregular aneurysmal dilation located at a non-branching site on an artery is very suggestive of intracranial artery dissection if associated with a segmental stenosis, but fusiform or irregular aneurysmal dilations are not specific for intracranial artery dissection in isolation. Additional radiological elements are needed to confirm the diagnosis of intracranial artery dissection, including rapid change in morphology. Whether the shallow and broad-based, blood blister-like intracranial aneurysms at the supraclinoid internal carotid artery are caused by intracranial artery dissections is controversial. As a result, some of the criteria used to define intracranial artery dissection in studies included in our Review, such as flame-shaped occlusion or irregular stenosis, are not specific for

Table 2: Differential diagnoses of intracranial artery dissection

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atherosclerotic stenosis</td>
<td>Isolated or unusual location of arterial stenosis; absence of other features of atherosclerosis (such as calcifications or plaques in other arteries); serial dynamic physical change of lesion shape (especially improvement of stenosis) on follow-up examinations; of a young age (<65 years) without traditional vascular risk factors</td>
</tr>
<tr>
<td>Vasospasm due to subarachnoid haemorrhage</td>
<td>Focal narrowing in intracranial artery seen on the day of onset (vasospasm occurs between 4 days and 3 weeks after subarachnoid haemorrhage)</td>
</tr>
<tr>
<td>Reversible cerebral vasocostriction syndrome</td>
<td>Focal narrowing in one rather than many intracranial arteries; absence of classical triggers for reversible cerebral vasocostriction syndrome (post-partum period, sympathomimetic or vasocostractive drugs); residual stenosis persisting for more than 3 months or serial dynamic physical change of lesion shape on follow-up examinations, especially if developing towards an aneurysm</td>
</tr>
<tr>
<td>Vasculitis</td>
<td>Focal narrowing in one rather than many intracranial arteries; absence of diffuse vessel wall inflammatory imaging signs; absence of systemic inflammatory disorder</td>
</tr>
<tr>
<td>Fibromuscular dysplasia</td>
<td>Acute symptoms; single so-called pearl-and-string sign and not so-called string-of-beads (medial fibroplasia); long stenosis, string sign, and not focal band-like constriction or tubular stenosis (intimal fibroplasia); dynamic change of lesion shape on follow-up examination</td>
</tr>
<tr>
<td>Fusiform aneurysm without dissection</td>
<td>Acute symptoms; mural haematoma, intimal flap, or double lumen; dynamic change of lesion shape on follow-up examination</td>
</tr>
<tr>
<td>Dolichoectasia</td>
<td>Acute symptoms; mural haematoma, intimal flap, or double lumen; dynamic change of lesion shape on follow-up examination</td>
</tr>
<tr>
<td>Thromboembolic occlusion</td>
<td>Concurrent visualisation of a mural haematoma or subsequent recanalisation showing a long filiform stenosis, a fusiform aneurysm, a pearl-and-string sign, or an intimal flap or a double lumen</td>
</tr>
<tr>
<td>Transient cerebral arteriopathy*</td>
<td>Intracranial artery dissection is mainly seen in teenagers; parenchymal infarct often has a large size; arterial lesions are irregular, and an arterial wall haematoma can be seen on T1-weighted fat-saturated sequences</td>
</tr>
<tr>
<td>Fenestration (anatomical variant)</td>
<td>Acute symptoms; no distinct adventitial layers (one vessel with two lumina and not two vessels); dynamic change of lesion shape on follow-up examination</td>
</tr>
</tbody>
</table>

In transient cerebral arteriopathy, the infarct is often restricted to the deep territory and associated with a smooth and focal arterial stenosis. All of these conditions can coexist with or might cause intracranial arterial dissection. *Present in children, mainly due to inflammation, para-infectious angiopathy (eg, post-varicella angiopathy), or idiopathic arteriopathy (eg, focal cerebral arteriopathy).
intracranial artery dissections (appendix). These non-specific criteria are an important limitation of most studies.

On the basis of a multidisciplinary expert consensus we have compiled terminology standards and grading of imaging diagnostic criteria for the diagnosis of intracranial artery dissection (panel).

To detect a mural haematoma of the arterial wall, high resolution 3 Tesla MRI that includes three-dimensional fat-suppressed T1-weighted images with black-blood effect is regarded as optimum imaging method. Imaging of the arterial lumen to detect an occlusion, stenosis, aneurysm, or intimal flap, with or without double lumen, can be done with CT angiography or MR angiography. Digital subtraction angiography is the gold standard for luminal imaging but, because of its invasive nature this method, is mainly used if CT or MR imaging is inconclusive, if patients present with subarachnoid haemorrhage, or if surgical or endovascular treatment is being considered.

The definite diagnosis of intracranial artery dissection often needs the combination of arterial wall and lumen imaging, and also the comparison between baseline and follow-up imaging (figure 2).

Management and outcome

Treatment options

Optimum treatment for patients with intracranial artery dissections is unknown. No randomised trials exist and only observational studies with small sample sizes are available, thus providing a very low level of evidence.

Patients with intracranial artery dissection with subarachnoid haemorrhage are usually treated with surgical or endovascular procedures because up to 40% of patients have rebleeding within the first days after the event.30,87 If patients are in very poor clinical health or the proposed treatment has an unacceptably high risk of complications, a decision can be made to withhold surgical or endovascular treatment.

In earlier reported series, patients with intracranial artery dissection without subarachnoid haemorrhage and with aneurysmal dilation were often offered surgical or endovascular treatment because of concern that the dissecting aneurysm would rupture.21 However, in recent years, most patients with intracranial artery dissection without subarachnoid haemorrhage have been treated medically, and offered acute stroke treatment and long-term prevention of ischaemic stroke. Endovascular treatment is undertaken only in patients with recurrent ischaemic symptoms despite receiving optimum medical treatment. Sometimes, endovascular treatment is undertaken if the dissecting aneurysm has increased in size, to prevent rupture, or more rarely to reduce signs of brainstem compression.73,75,84,89 In children, the preferred and widespread practice is surgical or endovascular treatment in patients with intracranial artery dissection with subarachnoid haemorrhage and those without subarachnoid haemorrhage and mass-effect, whereas patients with intracranial artery dissection without subarachnoid haemorrhage and cerebral ischaemia tend to be given medical treatment.
Surgical and endovascular treatment

Various surgical and endovascular treatment methods have been proposed for intracranial dissecting aneurysms (figure 4). All treatment methods aim to reduce blood flow in the dissected region. Deconstructive techniques sacrifice the parent artery, whereas reconstructive techniques aim to maintain a parent artery.

Parent artery occlusion is a deconstructive technique in which blood flow into the dissected segment of the artery is stopped by occlusion either surgically or through an endovascular approach. Preferably, the dissected segment is occluded both proximally and distally to prevent rerupture through retrograde filling of a dissecting aneurysm. Parent artery occlusion has a risk of brain infarct in case of insufficient collateral supply. Before permanent occlusion, the collateral supply can be assessed with temporary balloon-occlusion or amobarbital infusion during digital subtraction angiography (with simultaneous monitoring of the patient’s neurological function).

Reconstructive techniques, such as selective aneurysmal sac occlusion through clipping (surgical) or coiling (endovascular), are often difficult in intracranial artery dissection given the non-saccular shape of the dissecting aneurysm. In endovascular treatment, stent-assisted coiling can be used. Stenting of the dissected artery without any coiling by flow-diverter stents or conventional close-cell stents has been reported in small series, however, several days to months can pass before the dissecting aneurysm is thrombosed. Moreover, stenting needs dual antiplatelet treatment for several months after the procedure, thereby exposing patients to an increased risk of haemorrhagic complications.

Seldom, a bypass surgery between extracranial and intracranial arteries can be considered if the risk of infarction due to parent artery occlusion is unacceptably high and stenting is impossible. In very rare instances, mostly in middle-cerebral artery dissections (M2 branches), the dissected segment can be excised and arterial stumps reanastomosed.

As for saccular intracranial aneurysms, endovascular treatment is currently more frequently undertaken than is surgical treatment in most patients with intracranial artery dissection with subarachnoid haemorrhage in scientific literature. A comparison between surgical and endovascular treatment has not been made in a randomised trial.

Some observational studies have reported procedural complications after surgical or endovascular treatment for intracranial artery dissection (table 3, appendix). Recurrent bleeding was reported in 0–11% of patients with intracranial artery dissection with subarachnoid haemorrhage after surgical or endovascular treatment, and after treatment for ischaemia in 0–22% of patients. Cranial nerve palsies and spinal cord infarctions were seldom reported. Overall, of 813 endovascular procedures, 50 (6–2%) cerebral or spinal cord ischaemia, 15 (1–8%) rupture and rebleeding, and seven (0.9%) cases of cranial nerve palsies were reported; of 125 surgical procedures, 23 (18–4%) cerebral or spinal cord ischaemia, one (0.8%) rupture and rebleeding, and one (0.8%) case of cranial nerve palsy were reported. As previously emphasised, these percentages are likely to be an underestimation due to reporting and publication bias.

Medical treatment

Medical treatment of intracranial artery dissection without subarachnoid haemorrhage encompasses both acute stroke treatment (recanalisation) and long-term

Panel: Proposed terminology and grading of imaging diagnostic criteria for intracranial artery dissection

Proposed terminology for imaging diagnostic criteria of intracranial artery dissection

At least one of the three following features should be present when diagnosing an intracranial artery dissection:

- Fusiform or irregular aneurysmal dilation at a non-branching site of an intracranial artery, with at least one of the following criteria
 - Intramural haematoma (hyperintense rim on images with T1-weighted MRI), intimal flap, or double lumen*
 - Rapid change in morphology on repeated imaging (increase or reduction in size, subsequent appearance of stenosis)
 - Association with a focal stenosis (so-called pearl-and-string sign)
- Long filiform or irregular stenosis of an intracranial artery, with at least one of the following criteria:
 - Intramural haematoma (hyperintense rim on images with T1-weighted MRI), intimal flap, or double lumen*
 - Rapid change in morphology on repeated imaging (increase or reduction in size, or subsequent appearance of aneurysmal dilation)
 - Association with a fusiform or irregular aneurysmal dilation (so-called pearl-and-string sign)
- Occlusion of an intracranial artery that recanalises in either a fusiform or irregular aneurysmal dilation at a non-branching site, or a long filiform or irregular stenosis

Proposed grading of imaging diagnostic criteria for evidence of intracranial artery dissection

- Definite intracranial artery dissection
 - Stenosis or occlusion of an intracranial artery secondarily developing towards a fusiform or irregular aneurysmal dilation at a non-branching site
 - Intramural haematoma, intimal flap, or double lumen
 - Pathological confirmation of intracranial artery dissection
- Probable intracranial artery dissection
 - Fusiform or irregular aneurysmal dilation and focal, long filiform, or irregular stenosis (so-called pearl-and-string sign) without subarachnoid haemorrhage, or still present >1 month after subarachnoid haemorrhage
 - Fusiform or irregular aneurysmal dilation at non-branching site with rapid change in morphology (increase or reduction in size, or subsequent appearance of stenosis)
- Possible intracranial artery dissection
 - Fusiform or irregular aneurysmal dilation at non-branching site without change in morphology on repeated imaging within 6–12 months after first imaging
 - Long filiform or irregular stenosis of an intracranial artery, with reduction in size or disappearance over time

*Double lumen should be carefully differentiated from fenestration (which is an anatomical variant)
Aneurysmal sac occlusion can be done by clipping or stenting and selectively occludes the aneurysm, but does not change blood flow in the vessel. (D) Stenting aims to cover the dissected region and aneurysm, leaving blood flow in the vessel unchanged. Solid arrows represent antegrade blood flow. Dotted arrows represent retrograde blood flow. Figure reproduced from Nakajima and colleagues, by permission of Acta Neurochirurgica.

Figure 4: Four types of surgical and endovascular treatments
(A) Trapping aims to exclude blood flow from the dissected region and aneurysm. Both trapping and proximal occlusion can be done by clipping or coiling. (B) Proximal occlusion reduces blood flow in the dissected region and aneurysm. (C) Aneurysmal sac occlusion can be done by clipping or stenting and selectively occludes the aneurysm, but does not change blood flow in the vessel. (D) Stenting aims to cover the dissected region and aneurysm, leaving blood flow in the vessel unchanged.

prevention of ischaemic stroke. The safety and effectiveness of intravenous and intra-arterial thrombolysis in patients with intracranial artery dissection without subarachnoid haemorrhage are unknown, because only case reports have been published. The choice of anti-thrombotic treatment (anticoagulants or antiplatelets) in patients with intracranial artery dissection without subarachnoid haemorrhage with cerebral ischaemia has not been assessed in randomised controlled trials or in systematic reviews and meta-analyses of observational data. By assuming that the mechanisms of cerebral ischaemia in intracranial artery dissection resemble those of cerebral ischaemia in cervical artery dissection, examining studies on antithrombotic treatment in cervical artery dissection might be helpful. Results from randomised controlled trials of antithrombotic treatment in cerebral ischaemia during a mean follow-up spanning from 3 months to 8 years. In one study, recurrent haemorrhagic or ischaemic events

Mortality
Mortality outcome for patients with intracranial artery dissection and subarachnoid haemorrhage ranges between 19% and 50%. In studies including only patients who qualified for endovascular treatment, lower mortality rates (5–9%) were reported, which is not surprising given that these studies excluded the most severe patients from the outset.

Mortality outcome in patients without subarachnoid haemorrhage is low and similar to that in patients with cervical artery dissection, ranging between none and 3% in reported series.

Recurrent ischaemic stroke. The safety and effectiveness of intravenous and intra-arterial thrombolysis in patients with intracranial artery dissection without subarachnoid haemorrhage are unknown, because only case reports have been published. The choice of anti-thrombotic treatment (anticoagulants or antiplatelets) in patients with intracranial artery dissection without subarachnoid haemorrhage with cerebral ischaemia has not been assessed in randomised controlled trials or in systematic reviews and meta-analyses of observational data. By assuming that the mechanisms of cerebral ischaemia in intracranial artery dissection resemble those of cerebral ischaemia in cervical artery dissection, examining studies on antithrombotic treatment in cervical artery dissection might be helpful. Results from randomised controlled trials of antithrombotic treatment in cervical artery dissection are also missing. A pilot trial on 250 patients has been completed, showing no difference in efficacy of antiplatelet and anticoagulant drugs at preventing stroke and death in patients with cervical artery dissection, but stroke was rare in both groups. Several meta-analyses of observational studies have not shown any significant difference in clinical outcome between patients treated with anticoagulants and those treated with antiplatelets, mostly aspirin. Findings from a meta-analysis using a Bayesian approach suggested a treatment effect in favour of antiplatelet drugs, the advantage of which was less obvious when the analysis was restricted to studies of higher methodological quality. Although no haemorrhagic complication was reported in a small series of patients with intracranial artery dissection without subarachnoid haemorrhage who were treated with anticoagulants, the risk of subarachnoid haemorrhage is greater in intracranial artery dissection than in cervical artery dissection. Several studies reported patients with intracranial artery dissection with initial ischaemic manifestations who then subsequently or concurrently developed subarachnoid haemorrhage, prompting caution. In patients with intracranial artery dissection without subarachnoid haemorrhage and no signs of cerebral ischaemia, or in rare cases when both subarachnoid haemorrhage and cerebral ischaemia are present, no antithrombotic treatment, but close monitoring has been proposed. Studies investigating the predictors of subarachnoid haemorrhage and cerebral ischaemia in patients with unruptured intracranial artery dissection are warranted to optimise management strategies.

Outcome
Because of treatment and publication biases, little is known about the natural history of intracranial artery dissection. Overall, intracranial artery dissection has a more severe course than cervical artery dissection, with a more ominous outcome in patients with subarachnoid haemorrhage than in those without subarachnoid haemorrhage.

Table 3 and the appendix summarise outcomes reported in individual studies.

Recurrent haemorrhagic or ischaemic events
Although recurrences are poorly defined in most studies, overall, recurrent haemorrhagic or ischaemic events seem to follow the pattern of the initial event in more than 90% of patients. In patients with subarachnoid haemorrhage, recurrence of subarachnoid haemorrhage in up to 40% of patients has been reported, with the highest rates being noted in patients treated conservatively.

Most haemorrhagic recurrences cluster within the days after the initial event. In one study, recurrent subarachnoid haemorrhage occurred more frequently in patients with intracranial artery dissection older than 50 years and less frequently in patients with carotid intracranial artery dissection.

In patients without subarachnoid haemorrhage, recurrence rates of ischaemic stroke ranged between 2% and 14%, with a mean follow-up spanning from 3 months to 8 years. In one study, 38% of patients had recurrent cerebral ischaemia during a mean follow-up of 24 months, but antiplatelet drugs were not prescribed after the initial ischaemic event. Extension of the intracranial artery dissection into the basilar artery and involvement of the posterior inferior cerebellar artery were reported as risk factors for recurrent ischaemic stroke.
Very few patients seem to have different types of events associated with the intracranial artery dissection over time—ie, subarachnoid haemorrhage after initially unruptured, intracranial artery dissection (described between 4 days and 11 days after the initial diagnosis29,30) or ischaemic events attributed to residual arterial lesions several months or years after an initial subarachnoid haemorrhage.10 In some patients, signs of brainstem compression were noted several years after a dissecting aneurysm.21,30

Recurrent dissections

Little information is available about the risk of recurrent intracranial artery dissection. One study29 of 190 patients with regular follow-up imaging after intracranial artery dissection reported recurrent intracranial artery dissection in 18 patients (9%) during a mean follow-up of 3·4 years.29 Of the recurrent dissections, 12 (67%) occurred within 1 month after the initial event. This rate of recurrent dissections seems in line with the recurrence rate of cervical artery dissection, which is estimated between 0% and 8% in most studies.7

Functional outcome

Functional outcome is not always reported in published series and has been rated on different scales. Overall, more than 79% of patients with intracranial artery dissection and without subarachnoid haemorrhage had a favourable functional outcome (modified Rankin Scale ≤1 or ≤2, or equivalent).19,21–23,29–43 One study21 showed that

Table 3

<table>
<thead>
<tr>
<th>N</th>
<th>Treatment</th>
<th>Follow-up time</th>
<th>Deaths during follow-up</th>
<th>Good functional outcome</th>
<th>Recurrences or complications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All types</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yamaura et al (2000)23</td>
<td>SAH: 125 (61%) surgical or endovascular treatment, 80 (39%) treated conservatively (no details); non-SAH: 26 (12%) surgical or endovascular treatment, 125 (83%) treated conservatively (no details; one [1%] not described)</td>
<td>≥3 months</td>
<td>12% (SAH 27%, non-SAH 3%)</td>
<td>75% GOS 5 (SAH 63%, non-SAH 90%)</td>
<td>34 (10%) recurrence (no details on type; SAH: 29 recurrences [14%; no details on type of recurrence]; non-SAH: five recurrences [4%; no details on type of recurrence])</td>
</tr>
<tr>
<td>Mizutani (2011)29</td>
<td>SAH: 71 (71%) surgical treatment; 31 (29%) treated conservatively (no details); non-SAH mild-volume expansion plus free radical scavengers for infarction (occasionally antiplatelet drugs or anticoagulants for infarction plus stenosis); three (3%) surgical treatment (in patients who had aneurysm extension)</td>
<td>Mean 3–4 years (range 2–20–4 years in non-SAH)</td>
<td>11% (SAH 68%, non-SAH 2%)</td>
<td>Not reported</td>
<td>18 (10%) recurrence (new IADs, all in different arteries, 12 recurrent IADs occurred within 1 month, six recurrent IADs occurred after >1 year); one (1%) patient had a SAH at day 11 after onset</td>
</tr>
<tr>
<td>Ono et al (2013)30</td>
<td>SAH: 54 (63%) surgical treatment, 32 (37%) treated conservatively (no details); non-SAH: 12 (21%) surgical treatment, 45 (79%) treated conservatively (no details)</td>
<td>Mean 8.2 years (range 1 day–25 years)</td>
<td>18% (SAH 29%, non-SAH none)</td>
<td>69% independent (SAH 55%, non-SAH 90%)</td>
<td>36 (33%) SAH (35 patients [41%] rebleeding at mean 4.8 days [range 0–26 days]; non-SAH: one [2%] SAH 4 days after initial ischaemic event); 10 (7%) ischaemic stroke (SAH one [1%] ischaemic stroke at 85 months, non-SAH nine [16%] ischaemic stroke); non-SAH group one (2%) hemifacial spasm at 21 months due to compression by enlarged aneurysm</td>
</tr>
<tr>
<td>Kwak et al (2011)†19</td>
<td>SAH: 19 (86%) surgical or endovascular treatment (no details); three (14%) treated conservatively (no details); non-SAH: 23 (100%) treated with anticoagulation</td>
<td>Not reported</td>
<td>Not reported</td>
<td>Not reported</td>
<td>Four (4%) SAH (four [14%] rebleeding)</td>
</tr>
<tr>
<td>Metso et al (2007)31</td>
<td>SAH: 19 (86%) surgical or endovascular treatment (no details); three (14%) treated conservatively (no details); non-SAH: 23 (100%) treated with anticoagulation</td>
<td>Mean 1.3 years (range 1 day–8 years)</td>
<td>Not reported</td>
<td>Not reported</td>
<td>No SAH for patients without SAH; not reported for patients with SAH</td>
</tr>
<tr>
<td>Kim et al (2011)†33</td>
<td>Endovascular treatment</td>
<td>Mean 35 months (range 15–84 months)</td>
<td>8%</td>
<td>85% mRS=2 (SAH 77%, non-SAH 100%)</td>
<td>Six (5%) SAH (SAH six [3%] rebleeding, of which one [1%] on day of onset, four [5%] 3–4 days after treatment, and one [1%] 15 days after treatment), four 4% unruptured angiographic recurrent dissection in 100 patients with radiological follow-up, seven (10%) ischaemic stroke (SAH: five [11%] ischaemic stroke); non-SAH: two [7%] ischaemic stroke</td>
</tr>
<tr>
<td>Matsukawa et al (2012)†34</td>
<td>Not reported</td>
<td>Not reported</td>
<td>Not reported</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
</tbody>
</table>

Vertebrobasilar IAD

Ahn et al (2012)†32 | SAH: 48 (100%) endovascular treatment; non-SAH: 59 (32%) endovascular treatment | Median 47 months (range 8–105 months) | Not reported | Not reported | No SAH |
| Kim et al (2011)†33 | Endovascular treatment | Mean 35 months (range 15–84 months) | 8% | 85% mRS=2 (SAH 77%, non-SAH 100%) | Six (5%) SAH (SAH six [3%] rebleeding, of which one [1%] on day of onset, four [5%] 3–4 days after treatment, and one [1%] 15 days after treatment), four 4% unruptured angiographic recurrent dissection in 100 patients with radiological follow-up, seven (10%) ischaemic stroke (SAH: five [11%] ischaemic stroke); non-SAH: two [7%] ischaemic stroke |
| Matsukawa et al (2012)†34 | Not reported |

(Table 3 continues on next page)
Table 3: Treatment and outcome of patients with intracranial artery dissection in reported series that included more than 40 patients

<table>
<thead>
<tr>
<th>N</th>
<th>Treatment</th>
<th>Follow-up time</th>
<th>Deaths during follow-up</th>
<th>Good functional outcome</th>
<th>Recurrences or complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kashivasaki et al (2012)†</td>
<td>Endovascular treatment</td>
<td>Mean 55.6 months (range 12–132 months)</td>
<td>8% (SAH 13%, non-SAH none)</td>
<td>91% mRS≤2 (SAH 86%, non-SAH 100%)</td>
<td>One (1%) SAH: one (2%) rebleeding periprocedural, seven (10%) ischaemic stroke (SAH: five [11%] ischaemic stroke; non-SAH: two [7%] ischaemic stroke, two [3%] spinal cord infarction, six [8%] cranial nerve palsy, two [3%] asymptomatic recurrences)</td>
</tr>
<tr>
<td>Takemoto et al (2005)‡</td>
<td>SAH: five (100%) surgical treatment; non-SAH: nine (16%) surgical treatment, 48 (84%) treatment not specified</td>
<td>Not reported</td>
<td>None§</td>
<td>79% GOS 5 (SAH 40%, non-SAH 100%)</td>
<td>No SAH; two (14%) cerebral infarction (SAH: one [20%] periprocedural cerebral infarction; non-SAH one [11%] cerebral infarction 2 weeks after treatment)§</td>
</tr>
<tr>
<td>Shin et al (2014)†</td>
<td>Not reported</td>
<td>3 months</td>
<td>SAH 50%, non-SAH not reported</td>
<td>Favourable outcome (SAH 50%, non-SAH not reported)</td>
<td>Not reported</td>
</tr>
<tr>
<td>Nakazawa et al (2010)‡</td>
<td>SAH: 31 (100%) endovascular treatment; non-SAH: four (25%) endovascular treatment, 12 (7%) surgical treatment</td>
<td>Not reported</td>
<td>15% (SAH 23%, non-SAH none)</td>
<td>83% good recovery (SAH 71%, non-SAH 100%)</td>
<td>One (2%) SAH: one [3%] rebleeding after treatment, two (4%) ischaemic stroke (SAH: two [6%] periprocedural ischaemic stroke)</td>
</tr>
<tr>
<td>Jin et al (2009)††</td>
<td>Endovascular treatment</td>
<td>Mean 21.1 months (range 11–44 months)</td>
<td>10% (SAH 14%, non-SAH none)</td>
<td>69% GOS 5 (SAH 55%, non-SAH 100%)</td>
<td>Three (7%) SAH: three [10%] rebleeding after treatment, nine (21%) cerebral infarction (SAH: nine [31%] periprocedural cerebral infarction)</td>
</tr>
<tr>
<td>Zhao et al (2014)†*</td>
<td>Endovascular treatment</td>
<td>Mean 58 months (range 12–132 months)</td>
<td>7%</td>
<td>84% mRS≤2</td>
<td>Three (3%) SAH: one [2%] rebleeding; non-SAH: two [5%] SAH, seven (7%) angiographic recurrent dissection or aneurysm</td>
</tr>
<tr>
<td>Nakajima et al (2010)‡†</td>
<td>88 (81%) surgical treatment, 21 (19%) treated conservatively (no details)</td>
<td>Not reported</td>
<td>Not reported</td>
<td>Not reported</td>
<td>Ten (9%) rebleeding (eight [38%] in patients treated conservatively, two [7%] rebleeding after surgery)</td>
</tr>
<tr>
<td>Zhao et al (2013)†††</td>
<td>Endovascular treatment</td>
<td>Mean 62 months (range 12–78 months)</td>
<td>5%</td>
<td>83% mRS≤2</td>
<td>Two (4%) rebleeding after treatment (one not confirmed by imaging), five (9%) angiographic recurrence</td>
</tr>
<tr>
<td>Kim et al (2011)†‡‡</td>
<td>46 (24%) endovascular treatment, 49 (26%) anticoagulants (all with ischaemic events), 48 (25%) antiplatelet drugs, 48 (25%) analgesics only (all without ischaemic events)</td>
<td>Mean 46 months (range 15–102 months)</td>
<td>1%</td>
<td>94% mRS≤2</td>
<td>Four (2%) recurrent cerebral ischaemia within 6 months, one (1%) brainstem compression symptoms at 3 years due to compression by enlarged aneurysm</td>
</tr>
<tr>
<td>Kai et al (2011)‡‡‡</td>
<td>Four (4%) initial surgery or endovascular treatment, five (5%) endovascular treatment during follow-up (due to lesion progression [three], new ischaemia [one], or mass-effect [one patient], despite medical treatment); 91 (91%) treated conservatively (if progressive ischaemia, antiplatelet drugs given [after second ischaemic attack]; if progressive mass-effect, given steroids; if headache only, non-progressive ischaemia, or mass-effect, systolic blood pressure controlled [<140 mm Hg]; if progression despite medical treatment, further surgical or endovascular treatment)</td>
<td>24 months</td>
<td>Not reported</td>
<td>Not reported</td>
<td>No SAH, 38 (38%) recurrent or de-novo cerebral ischaemia (initially headache [18 patients] or ischaemia [20 patients])</td>
</tr>
<tr>
<td>Matsukawa et al (2014)†¶†</td>
<td>75 (97%) treated conservatively (analgesics and blood pressure control in all, if ischaemic stroke give aspirin [five patients], two [3%] endovascular treatment due to prominent aneurysmal dilation</td>
<td>Mean 17 months (range 3–38 months)</td>
<td>None</td>
<td>Not reported</td>
<td>Three (4%) cerebral ischaemia, three (4%) vertebrobasilar insufficiency (not specified), 19 (25%) morphological worsening of IAD (ie, aneurysmal enlargement, worsening of stenosis, or occlusion)</td>
</tr>
</tbody>
</table>

N=number of patients. SAH=subarachnoid haemorrhage. GOS=Glasgow outcome scale version 5. MCA=middle cerebral artery. mRS=modified Rankin Scale score. *Follow-up only available for 31 patients without surgical treatment. †Series partly overlap. ‡Duration of follow-up was calculated only for 61 survivors not lost during follow-up. §Numbers and percentages only reported for 14 patients with aneurysm and surgical treatment. ¶Duration of follow-up was calculated only for 30 survivors. ||178 patients.

N=number of patients. SAH=subarachnoid haemorrhage. GOS=Glasgow outcome scale version 5. MCA=middle cerebral artery. mRS=modified Rankin Scale score. *Follow-up only available for 31 patients without surgical treatment. †Series partly overlap. ‡Duration of follow-up was calculated only for 61 survivors not lost during follow-up. §Numbers and percentages only reported for 14 patients with aneurysm and surgical treatment. ¶Duration of follow-up was calculated only for 30 survivors. ||178 patients.

Table 3: Treatment and outcome of patients with intracranial artery dissection in reported series that included more than 40 patients
being older and basilar artery involvement were independent predictors of unfavourable functional outcome. Between 24% and 86% of patients with vertebrobasilar subarachnoid haemorrhage were reported to reach a good functional outcome after treatment, with the highest rates in patients who were preselected for endovascular treatment. Older age and unfavourable Hunt-Hess scale scores at admission to hospital were independent predictors of unfavourable functional outcome.41

Recanalisation rates with conservative treatment
The timeframe of changes seen in imaging characteristics in patients with intracranial artery dissection and the rate of recanalisation for conservative treatment are unknown. In patients without subarachnoid haemorrhage, one study29 reported that major changes in vessel geometry were almost completed within the first 2 months after dissection, with minor changes still happening after 2 months. After a mean follow-up of 15 months, in another study32 of 114 patients with vertebrobasilar intracranial artery dissection without subarachnoid haemorrhage, the imaging results showed improvement in 66 (58%), no change in 34 (30%), and worsening in 14 (12%) patients. In another independent series of 91 patients who were treated conservatively, partial or complete normalisation was reported in 18 (20%), no change was seen in 70 (77%), and secondary occlusion occurred in three (3%) patients.42 In patients with intracranial artery dissection and subarachnoid haemorrhage, the natural timeframe of structural arterial changes is unknown, because most patients undergo an operation.29

Conclusions and future directions
Intracranial artery dissection is an uncommon and presumably underdiagnosed cause of both ischaemic stroke and subarachnoid haemorrhage. Diagnosis of intracranial artery dissection is often difficult because of non-specific clinical presentation; low sensitivity of radiological methods for pathognomonic signs, such as a mural haematoma, intimal flap, or double lumen, in view of the small size of the arteries; and the dynamic nature of the disease. We propose terminology and grading of imaging diagnostic criteria for intracranial artery dissections (panel). The definite diagnosis of intracranial artery dissection often needs the combination of arterial wall and lumen imaging and also the comparison between baseline and follow-up imaging.

In view of the absence of randomised trials, suggestions for treatment of intracranial artery dissection are general and empirical. Hence, we propose a multidisciplinary expert consensus statement on the management of intracranial artery dissection. In patients with an acute ischaemic stroke suspected to be caused by intracranial artery dissection (diagnosis is seldom definite within the short time window for thrombolysis), intravenous thrombolysis should probably not be withheld in the absence of associated haemorrhage on initial brain imaging. Outside the time window for thrombolysis, before initiation of antithrombotic treatment in patients with intracranial artery dissection and cerebral ischaemia, a lumbar puncture can be done if neuroimaging cannot formally rule out minor subarachnoid haemorrhage. The higher theoretical risk of subarachnoid haemorrhage than cervical artery dissection and the superiority of aspirin over anticoagulants in the acute phase of ischaemic stroke in general30 are empirical arguments in favour of prescription of aspirin rather than anticoagulants. In case of recurrent thromboembolic events despite aspirin, dual antiplatelet treatment or anticoagulants could be considered. Endovascular or surgical treatment might be an option if additional embolic events happen or if a progressive increase in aneurysmal size is reported, particularly if it causes a mass-effect.

Risk of rebleeding in patients presenting with subarachnoid haemorrhage probably justifies endovascular or surgical intervention in most instances. Treatment indications and options should be discussed in multidisciplinary teams before implementation. Many centres consider endovascular parent artery occlusion as the first treatment choice. Stent placement or stent-assisted coiling or, in some instances, surgical repair or bypass are mostly regarded as a second treatment choice, in case of insufficient collateral blood supply or important side branches stemming from the parent artery. Despite providing important information about the characteristics, treatment, and outcome of intracranial artery dissections, reported studies have important limitations. First, all studies were retrospective and included quite small cohorts (<400 patients), because of the low frequency of the disease. Second, the definition of intracranial artery dissection was often non-specific. Retrieved from www.thelancet.com/neurology

Search strategy and selection criteria
References for this Review were identified through searches of PubMed with the terms "intracranial", "intradural", "intracranial aneurysm", or "intracranial artery diseases" in combination with "dissection", "vertebral artery dissection", "carotid artery, internal", "dissection", or "aneurysm, dissecting" between PubMed inception and Dec 1, 2014. We also identified scientific papers by reviewing reference lists of relevant articles and through searches of the authors’ personal files. We considered articles published in English, French, German, Dutch, Italian, Turkish, Finnish, Swedish, and Spanish. Abstracts published only at meetings were excluded from our search. Only original articles describing at least one aspect of clinical characteristics and radiological features and outcome, in series of at least 20 patients, were chosen. If several studies into overlapping samples had been reported, only the largest and most recent were included, except if the overlap was only partial or if different parameters were assessed. Autopsy series and papers describing iatrogenic dissections or dissections secondary to penetrating trauma were not included. Additionally, cerebral artery dissection with an intracranial extension, intracranial arterial dissection secondary to penetrating trauma, and iatrogenic intracranial arterial dissection are not discussed in this Review.
and varied between studies. Third, recruitment was often biased towards patients seen in specialised departments of neurology, neurosurgery, or interventional neuroradiology. Fourth, most data are derived from Asian populations, restricting the generalisability of findings to populations worldwide. Fifth, follow-up time was very heterogeneous between and within studies, attrition was not well examined or accounted for, and no standard criteria were used for clinical or radiological outcomes (recurrences of ischaemic or haemorrhagic events, recurrent dissections, functional outcome, and measurement of lesion progression). Sixth, some reports of a particular endovascular technique were biased towards patients with less severe disease from the outset, and mortality rates and outcome were sometimes missing; moreover, out of all interventional studies done, publication bias likely favoured studies showing improved clinical outcomes. Finally, data for intracranial artery dissection in children are particularly scarce and, apart from the few studies in children covered in our Review, other information obtained from the scientific literature might not be generalisable to children.

In conclusion, multicentre prospective studies and, ultimately, trials with standardised protocols for diagnosis, imaging, and follow-up of intracranial artery dissection are needed. Future efforts should aim to promote international transdisciplinary collaborations, which will be necessary to gather large enough and representative samples.

Contributors
SD designed the structure of the Review, did the literature search, convened the expert committee, and prepared the first draft and subsequent versions of the Review. AC did the literature search, modified subsequent drafts, and contributed to the preparation of tables and figures. SS did the literature search. M-GT initiated the Review, refined the conception and design, contributed to writing, and critically revised the draft. SD, AC, M-AL, MU, TMM, JMJ, BG-S, STE, AP, AMS, YB, JWC, AD, GG, SS, PR, HS, JCW, SJ, JJM, TB, CG-G, AB, ET, PAL, HC, HSM, BBW, SC, RB, CS, TT, MA, and M-GB attended the consensus meeting. All authors reviewed the draft critically.

Declaration of interests
TMM reports grants from The Emil Aaltonen Foundation and Maud Kuistila Memorial Foundation; and grants from Helsinki University Central Hospital Research Fund, Biocmedium Helsinki Foundation, and Helsinki University Medical Foundation, outside the submitted work. AD is an employee of Cephalgia. VT reports other relationships from Boehringer Ingelheim, Medtronic, Pfizer, and Bayer, outside the submitted work. ET reports personal fees from BMS, Pfizer, Bayer, Boston Scientific, and Boehringer Ingelheim, outside the submitted work. HC reports personal fees from Johnson and Johnson and Lundbeck, outside the submitted work. TT reports personal fees from Boehringer Ingelheim and Mitsubishi Pharma, H Lundbeck A/S, Sanofi-Aventis, PhotoThera Inc, Mitsubishi Pharma, BrainGate, Orton Pharma, Schering Plough, Bayer, Pfizer, Concentric Medical, Helsinki University Central Hospital, Sigrid Juselius Foundation, Liv och Hälsa Foundation, Biocenter Finland, Biocentrum Helsinki, European Union, Finnish Academy of Sciences, and from National Institutes of Health. TT reports personal fees from Bayer, Pfizer, Professio Finland, University of Helsinki, Finnish Medical Association, Finnish Neurological Association, and the University of Donau (Krems). TT reports other payments to his institution from Salus Ansvar Foundation Award, Finnish Medical Association Quality Award (2011 and 2014), and personal fees from other relationships from European Stroke Conference, European Federation of Neurological Societies Conference, European Stroke Organisation, University of Rostock, University of Bielefeld, Australia and New Zealand Stroke Society, Austrian Stroke Society, University of Leuven, University of Tartu, Nordic Stroke Conference, Polish Neuroscience Society, Greek Internal Medicine Society, University of Donau, Krems, Thrombolysis and Thrombectomy Acute Stroke Treatment Conference, World Stroke Conference, University of Bern, University of Tuebingen, German Psychological Society, outside the submitted work. MA reports personal fees (speaker’s fee, advisory board honoraria) from Covidien, Boehringer Ingelheim, and BMS, outside the submitted work. MA reports research grants from Swiss National Science Foundation, Swiss Heart Foundation, SHIRE, Nestlé Health Services, outside the submitted work. SD is supported by the Agence Nationale de la Recherche. AC is supported by the Dutch Heart Foundation (2007/845). JMJ is supported by the National Institute of Health (U10 NS086606-01). AMS and BBW are both supported by the American Heart Association/American Stroke Association (AHA/ASA) National Clinical Research Program (AHA 3CRP141400001). HSM is supported by a National Institute of Health and Research senior investigator award. M-AL, MU, BG-S, STE, AP, PB, ON, YB, JWC, GG, SS, PR, HS, JCW, LJ, GJdB, LHB, SJ, JMJ, TB, CG-G, MK, TM, KM, JFM, VMP, AB, PAL, DL, SC, RB, CS, and M-GB declare no competing interests.

References

